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Abstract

Bacterial secondary metabolites, synthesized by enzymes encoded in biosynthetic gene clusters (BGCs), can underlie microbi-
ome homeostasis and serve as commercialized products, which have historically been mined from a select group of taxa. While 
evolutionary approaches have proven beneficial for prioritizing BGCs for experimental characterization efforts to uncover new 
natural products, dedicated bioinformatics tools designed for comparative and evolutionary analysis of BGCs within focal taxa are 
limited. We thus developed lineage specific analysis of BGCs (lsaBGC; https://github.com/Kalan-Lab/lsaBGC) to aid exploration of 
microdiversity and evolutionary trends across homologous groupings of BGCs, gene cluster families (GCFs), in any bacterial taxa 
of interest. lsaBGC enables rapid and direct identification of GCFs in genomes, calculates evolutionary statistics and conservation 
for BGC genes, and builds a framework to allow for base resolution mining of novel variants through metagenomic exploration. 
Through application of the suite to four genera commonly found in skin microbiomes, we uncover new insights into the evolution 
and diversity of their BGCs. We show that the BGC of the virulence- associated carotenoid staphyloxanthin in Staphylococcus aureus 
is ubiquitous across the genus Staphylococcus. While one GCF encoding the biosynthesis of staphyloxanthin showcases evidence 
for plasmid- mediated horizontal gene transfer (HGT) between species, another GCF appears to be transmitted vertically amongst 
a sub- clade of skin- associated Staphylococcus. Further, the latter GCF, which is well conserved in S. aureus, has been lost in most 
Staphylococcus epidermidis, which is the most common Staphylococcus species on human skin and is also regarded as a commen-
sal. We also identify thousands of novel single- nucleotide variants (SNVs) within BGCs from the Corynebacterium tuberculostearicum 
sp. complex, a narrow, multi- species clade that features the most prevalent Corynebacterium in healthy skin microbiomes. Although 
novel SNVs were approximately 10 times as likely to correspond to synonymous changes when located in the top five percentile of 
conserved sites, lsaBGC identified SNVs that defied this trend and are predicted to underlie amino acid changes within functionally 
key enzymatic domains. Ultimately, beyond supporting evolutionary investigations of BGCs, lsaBGC also provides important func-
tionalities to aid efforts for the discovery or directed modification of natural products.

DATA SUMMARY
Genomic assemblies and sequencing reads for Staphylococcus and Micrococcus luteus isolates we introduced in this study 
are provided on the National Center for Biotechnology Information (NCBI) database under BioProjects PRJNA803478 and 
PRJNA830888. The lsaBGC software suite was developed in Python 3 and R and is available on Github at: https://github.com/ 
Kalan-Lab/lsaBGC. Algorithmic descriptions of programs can be found on the Github wiki and in Text S1 (available in the online 
version of this article). A small test case consisting of Cutibacterium BGCs and genomes is included in the Github repository. 
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Version 1.0 of the software was used for the analyses and results described in this study unless otherwise noted. Supplementary 
materials for the paper can be found on Figshare at 10.6084/m9.figshare.21689132, including primary results by lsaBGC- Easy 
(v1.31) for Cutibacterium avidum using default parameters and antiSMASH (v6.0.0) for BGC identification (Dataset S1). The 
authors confirm all supporting data, code and protocols have been provided within the article or through supplementary data 
files [1].

INTRODUCTION
The secondary metabolome of bacteria has served as a valuable reservoir of natural products with great societal benefit [2]. 
Historically, many commercially available drugs, including antibiotics, have been identified from particular taxonomic groups, 
such as the genus Streptomyces within Actinomycetota [2–4]. Several studies have explored the secondary metabolome of these 
metabolically rich microbial taxa to develop a comprehensive understanding of their chemical diversity and unique traits [5–8]. 
Most of these studies first identify biosynthetic gene clusters within genomes using the popular antiSMASH software [9] and then 
group biosynthetic gene clusters (BGCs) into gene cluster families (GCFs) using BiG- SCAPE [10]. This approach uses a set of key 
protein domains as their base to group BGCs predicted to encode similar metabolites – a method similar to other bioinformatics 
software for genomics annotation and analysis of BGCs [11–13]. However, when working in the context of a single species or 
genus, it becomes advantageous to use full protein sequences and identify orthologues [14], which provide greater resolution for 
determining evolutionary relationships between BGCs. Formal identification of orthologous proteins then permits the calculation 
of evolutionary statistics for genes across BGC instances belonging to a common GCF. Further, trends around which genes might 
be the most rapidly evolving or display signatures of vertical vs horizontal descent can be identified.

Due to difficulties in the cultivation of many bacterial taxa, several recent studies have begun to explore metagenomic datasets to 
unearth novel secondary metabolites [15–17]. While previous endeavours relied on performing metagenomic assembly, two recent 
read- based approaches were described to reliably and sensitively search for key BGC domains in metagenomes [16, 18]. This highlights 
a larger trend toward seeking highly novel secondary metabolites and, in turn, prioritized investigation of poorly studied or newly 
discovered taxa [19]. Nevertheless, there could be tremendous reward for efforts to advance our understanding of catalogued but 
uncharacterized BGCs from well- studied taxa that may lead to novel biological insights beyond natural products discovery. Recent 
studies that explored the vertical descent and conservation of BGCs across the genus of Salinospora and the fungal species Aspergillus 
flavus have shown that intra- genus or intra- species evolution can result in chemical and regulatory diversification of the encoded 
metabolites [7, 20]. Moreover, methods to leverage metagenomic datasets and identify homologous instances of rare BGCs from 
species with limited representative genomes can lead to critical insight into their function and ecological distribution [5].

To aid the advancement of such taxa- specific analyses of BGCs, we introduce the comprehensive software suite lineage specific 
analysis of BGCs (lsaBGC; https://github.com/Kalan-Lab/lsaBGC), which consists of several programs for comparative genetics of 
BGCs determined directly from antiSMASH, as well as metagenomic mining. The utility of the multiple functionalities included 
in the lsaBGC suite, which expand and complement the existing array of software for evolutionary investigations of BGCs, is 
described here through application to four major genera commonly found in healthy human skin microbiomes. Several secondary 
metabolites that function as antibiotics [21–23], virulence factors [24], or in microbe–host interactions [25, 26] have been 
identified in bacteria from skin microbiomes, primarily from staphylococci. Human skin is also easily accessible for sampling 
and most species can be cultivated for follow- up studies. Using lsaBGC, we reveal new ecological and evolutionary insights for 
both well- characterized and unknown predicted metabolites, including signatures of inter- species transfer for the virulence- 
associated staphylococcal carotenoid staphyloxanthin and a highly conserved predicted siderophore found encoded by diverse 
Corynebacterium species. In addition, through mining skin metagenomic datasets, we find novel coding variants within the 
functionally important ketide synthase (KS) domain of the polyketide synthase (PKS) responsible for mycolic acid biosynthesis, 
a defining cell wall component of Corynebacterium species implicated in recognition by host immune systems.

Impact Statement

Comprehensive studies of the biosynthetic gene clusters (BGCs) for specific taxa have become commonplace in the last 5 years. 
Deeper investigations into individual gene cluster families (GCFs), however, remain largely a manual process. Here we introduce 
lsaBGC to simplify such investigations with easy- to- use bioinformatic workflows. The functionalities provided by lsaBGC will not 
only support evolutionary investigations of BGCs but also aid efforts to discover or synthesize new natural products, such as 
antimicrobials. We applied lsaBGC to genera common to the skin microbiome and revealed that the virulence factor staphylox-
anthin is not confined to Staphylococcus aureus but prevalent across staphylococci. This has important implications for research 
aimed at targeting this metabolite to quell S. aureus. In addition, through application to the Corynebacterium tuberculostearicum 
species complex, we show how lsaBGC can identify specific metagenomes harbouring strains with novel and predicted non- 
synonymous variants within functionally important domains.

https://github.com/Kalan-Lab/lsaBGC
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RESULTS
IsaBGC allows for sensitive and systematic identification of BGC homologue groups
The lsaBGC suite consists of eight core programs, four workflows and several additional scripts for analyses [Figs 1, S1 and S2 and 
Text S1 (available in the online version of this article)]. These programs allow for clustering BGCs into GCFs, refining bounda-
ries of BGCs, and sensitive, yet specific, rapid detection of GCF instances in draft- quality assemblies that often contain BGCs 
fragmented across scaffolds. The suite additionally includes dedicated tools for GCF visualization, evolutionary and population 
genetic analysis of individual genes within GCFs, and base resolution identification of novel single- nucleotide variants (SNVs) 
in complex metagenomes.

To demonstrate the capabilities of the lsaBGC suite we applied it to four genera that are stable and integral members of the human 
skin microbiome [27–31]. These included three genera in the phylum Actinomycetota (formerly Actinobacteria), Corynebac-
terium, Cutibacterium and Micrococcus, as well as the Bacillota (formerly Firmicutes) genus Staphylococcus. lsaBGC was also 
independently applied to the species or species complex from each genus most commonly represented in skin microbiomes. 
These were the Corynebacterium tuberculostearicum species complex, Cutibacterium acnes, Micrococcus luteus and Staphylococcus 
epidermidis (Table S1).

First, lsaBGC- AutoProcess was used to run gene calling [32, 33], BGC annotation [9] and de novo homologue group 
delineation [14] with complete or chromosomally complete genomes for each genus or species. Then lsaBGC- Cluster 
was applied to group homologous BGCs into GCFs and systematically searched for instances of GCFs using lsaBGC- 
AutoExpansion (Figs 2, S1c; Tables S2, S3; Text S1). To assess the validity and sensitivity of this approach, two bench-
marking tests using BGCs identified in M. luteus were performed showing that the lsaBGC- AutoExpansion framework 
for direct identification of GCF instances leads to greater sensitivity compared to running de novo antiSMASH on 
fragmented draft- quality assemblies (Figs 2a, b, S3, S4; Text S1). This increased sensitivity was due to more comprehensive 
detection of auxiliary genes located on the edges of scaffolds not containing core domains used by antiSMASH for BGC 
detection. Because antiSMASH delineates BGC boundaries based on physical distance to core domains, we also found 
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Fig. 1. An overview of the lsaBGC suite. A schematic overview of the lsaBGC suite is shown, highlighting functionalities to: cluster BGCs to GCFs, identify 
homologous instances of GCFs directly in assemblies, and perform evolutionary and metagenomic investigations.
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that lsaBGC- AutoExpansion can synchronize inclusion of genes near BGC boundaries, which are variably included as 
part of BGCs by antiSMASH across homologous instances from different genomes (Figs 2a, b, S4; Text S1). In addition, 
lsaBGC- AutoExpansion is highly efficient and allowed us to search for 63 GCFs identified from high- quality Staphylo-
coccus genomes in 14 978 draft- quality genomes in approximately 14 h using 40 cores and less than 150 Gb of memory 
(Fig. 2c). A positive association between complete BGC instances and assembly quality was observed (Fig. 2d; Text S1). 
While the detection of false- positive BGC segments annotated using lsaBGC- AutoExpansion is rare (Figs 1c, d, S4) due 
to BGC conservation within species and genera [34, 35], users are still advised to visually inspect such segments using 
lsaBGC- See figures and filter segments, if necessary.

lsaBGC enables reliable comparative genomics to explore evolutionary trends of BGCs
The increased sensitivity of lsaBGC to uniformly detect auxiliary components of BGCs in each genome enabled us to perform 
reliable comparative genetic analyses across GCF instances. We first focused on two of the four genera with the greatest breadth 
of diversity, Corynebacterium and Staphylococcus, and selected a subset of 456 and 229 dereplicated, representative genomes from 
each genus, respectively (Table S1). To better understand which species in these genera were most relevant to the skin environ-
ment, we first profiled how often distinct species were found among healthy skin microbiomes using a large, recently generated 

(d)

(c)(a)

Percentage of homologue groups within BGC 
segments co-located with protocore homolog 
groups across 14,978 Staphylococcus draft 
genomes of varying assembly quality

Assembly N50s (log10)
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(n=15,055 genomes)

BGC types

antiSMASH on complete genomes lsaBGC-AutoExpansion on complete genomes
(using antiSMASH predictions in complete genomes)
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Fig. 2. lsaBGC offers an efficient and sensitive means for GCF homology detection. (a) The aggregate length in base pairs and (b) the number of scaffolds 
that featured a segment regarded as belonging to 1 of 9 GCFs are shown for antiSMASH and lsaBGC- AutoExpansion annotation of BGCs when applied 
to 14 complete M. luteus genomes and their fragmented variants generated using read- based simulation and reassembly. lsaBGC- AutoExpansion 
was applied to both complete and fragmented genomes using GCF profiles established from BGCs identified by antiSMASH on complete genomes 
and clustered with lsaBGC- Cluster. Results were averaged across either samples or across samples and replicate fragmented genomes with bars 
corresponding to a single standard deviation. Asterisks (*) indicate singleton GCFs found in only one genome. (c) A neighbour- joining tree of 15 057 
Staphylococcus genomes based on pairwise MASH ANI estimates is shown alongside a heatmap indicating the presence of GCFs. Only GCFs found 
in >5 % of genomes are shown. Red dots on neighbour- joining trees signify complete or chromosomal genomes used for initial identification of BGCs. 
Heatmap cell colour indicates the major BGC class as predicted by antiSMASH. (d)  The relationship between the assembly quality measured by 
N50 and the total number of homologue groups detected across 14 978 Staphylococcus draft genomes is shown. The colouring corresponds to the 
percentage of BGC homologue groups co- located in a segment with a homologue group commonly found in protocore regions of BGC predictions by 
antiSMASH run on completed genomes.
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metagenomics dataset [36, 37] (Table S4; Text S1). Skin- associated species (found in more than 10 of 270 metagenomes) were 
phylogenetically clustered for both genera, within the S. epidermidis/aureus clade (Fig. S5a) and the C. tuberculostearicum species 
complex (Fig. S5b).

Examining the association of individual homologue groups to skin- associated species revealed that several GCFs were enriched 
within skin- associated staphylococci, but only two were enriched for skin- associated corynebacteria, both encoding hypothetical 
proteins (Table S5; Text S1). Nearly half of the homologue groups enriched for skin- associated staphylococci (5 of 12; 41.7%) were 
related to GCF- 10, predicted to encode a non- ribosomal peptide synthetase (NRPS) corresponding to pyrazinone biosynthesis. 
Pyrazinones are reported to regulate virulence in S. aureus [24, 38] and were previously identified as being synthesized by two 
enzymes, PznA and PznB, specific to species commonly associated with human skin, including S. aureus and S. epidermidis 
[24, 38]. Through examination of the lsaBGC GCF classifications, we discovered seven distinct GCFs corresponding to novel 
variants and genomic contexts for pznAB (Fig. S6a), including within genomes of species that are non- human skin- associated. 
Orthologous copies of pznA and pznB between GCFs were largely divergent in sequence and found in vastly different genomic 
contexts (Fig. S6ab), which could be the result of either ancestral HGT events where pznAB integrated into different genomic 
loci in different species or ancestral intra- genomic rearrangements.

LSABGC ENABLES EASY IDENTIFICATION OF INCIDENTS OF HGT FOR INDIVIDUAL GCFS
To evaluate more evident incidents of HGT occurring for individual GCFs, we systematically applied lsaBGC- Divergence, paired 
with Bayesian shrinkage analysis, for calculating Beta- RD distributions for each GCF from Corynebacterium and Staphylococcus. 
Beta- RD is a statistic that measures the sequence similarity between pairs of BGCs belonging to the same GCF normalized by the 
expected similarity of their genomic contexts. Thus, if two BGCs are highly similar in sequence but are found in vastly divergent 
genomes, such as those classified as different species, the Beta- RD statistic will be greater than one and indicate either high 
conservation or, potentially, the occurrence of recent HGT (Fig. S5cd; Table S6; Text S1).

High Beta- RD posterior ranges were observed for two NRPS containing GCFs from Corynebacterium. One of these GCFs, 
predicted to encode an NRPS- dependent siderophore [39], was found in several species commonly isolated from skin [37]. Using 
results from lsaBGC- PopGene for this GCF, which includes determination of a consensus gene order across BGC instances and 
a gene- specific calculation of Beta- RD, we find that the NRPS is highly conserved in sequence across species and found flanked 
by MGEs, as previously reported in Corynebacterium jeikeium [39] (Fig. 3a–e). The taxonomic breadth and high sequence 
conservation of this GCF suggests that it has undergone recent HGT between distantly related species.

We further assessed the likelihood of HGT for this GCF through the measurement of codon usage concordance between BGCs 
and their background genomes, using a standalone program provided in lsaBGC. Application of this program to the genome of 
Corynebacterium simulans strain PES1 showed that the observed cosine distance for the BGC was high relative to a simulated 
distribution of cosine distances based on coding genes across the full genome, further suggesting that the BGC was gained in the 
genome relatively recently and supporting horizontal acquisition (Fig. 3f).

LSABGC PROVIDES COMPREHENSIVE AND DETAILED VIEWS INTO EVOLUTIONARY TRENDS 
WITHIN GCFS
LsaBGC- PopGene is a core program in the suite that generates convenient reports on the annotation [40, 41], conservation and 
evolutionary trends of homologue groups found within a GCF (Fig. 4). We used lsaBGC- PopGene to infer selective pressures 
acting on homologue groups within GCFs through calculating inter- and intra- species Tajima’s D [42] using select representative 
genomes, obtained through genomic dereplication, for each genus, including Cutibacterium and Micrococcus (Tables S1, S7; Text 
S1). While lsaBGC- PopGene is highly scalable, it is important to perform uniform dereplication of genomes to accurately infer 
species- wide signatures of selection without being biased by highly represented strains in genomic datasets. Further, only homo-
logue groups that were found as a single copy within the GCF context and observed in four of more genomes were considered. 
We found that the median intra- species Tajima’s D was centred at a value of roughly 0, in accordance with expectations of the 
null model (Fig. S7a). Also in alignment with expectations, we observed high values of genus- wide Tajima’s D for homologue 
groups in GCFs found in multiple species (Fig. S7b).

A focused intra- species analysis within S. aureus revealed that a multi- type terpene/typeIII PKS GCF (GCF- 3) had the lowest 
Tajima’s D values and seven homologue groups with values below −2.0, suggestive that they are either highly conserved or, poten-
tially, under sweeping selection (Fig. S7c). The terpene component of this hybrid GCF encodes for staphyloxanthin carotenoid 
production [43] and manual inspection determined that the type III PKS prediction actually corresponds to hydroxymethylglu-
taryl- CoA (HMG- CoA) synthase, which is involved in the mevalonate pathway for isoprenoid synthesis [44] and is homologous 
to KS domains of polyketide synthases [45]. Further, the regions in- between and flanking the staphyloxanthin encoding operon, 
crt, and HMG- CoA synthase include several genes important to staphylococcal virulence, some of which were found in multiple 
copies in certain species (Fig. S8ab). Because this GCF was predicted to be one of the four GCFs ancestrally acquired by the S. 
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epidermidis/aureus clade, the five- gene crt operon encoded by it was found in most species belonging to the clade. Surprisingly 
however, crt genes were missing in more than 95 % of the S. epidermidis genomes, the most prevalent staphylococcal species on 
skin [29, 46], likely due to gene loss (Figs S5a, S8b).

The virulence-associated carotenoid staphyloxanthin is ubiquitous across the genus Staphylococcus
Although staphyloxanthin is well known as an S. aureus virulence factor [47, 48] and other Staphylococcus species have been 
reported as being pigmented [49, 50], we were unable to identify a report of the distribution of the crt operon across the genus 
Staphylococcus. To our knowledge, there are only two prior studies formally suggesting its production in one other non- aureus 
species, Staphylococcus xylosus [51, 52]. lsaBGC analysis revealed a total of five staphylococcal GCFs encoding for staphyloxan-
thin (Figs 5a, S9a). Following GCF- 3, the second most prevalent GCF encoding staphyloxanthin, GCF- 6, had a high Beta- RD 
distribution (Fig. S5c) and was widely distributed across divergent species in the genus (Fig. 5a), as well as Mammaliicoccus, the 
closest phylogenetic neighbours of staphylococci [53]. Constructing a phylogeny based on a concatenated alignment of CrtM 
and CrtN revealed the appropriate delineation of GCF- 3 and GCF- 6 despite their co- occurrence in the genomes of particular 
species, such as Staphylococcus warneri (Figs 5a, d, e, S9b). Additional analyses showed that GCF- 6 can be found on plasmids 
and depicts signatures of inter- species HGT (Figs 5b,d,e, S10).

To assess whether carriage of the crt operon translates to staphyloxanthin production in non- aureus species, we identified 
staphylococcal isolates cultivated from human skin with whole- genome sequences generated by our laboratory that encode a 
staphyloxanthin- related GCF. We identified a rare instance of an S. epidermidis isolate with GCF- 3 (only 2–3 % of S. epidermidis 
genomes encode GCF- 3), strain LK1136, and an S. warneri isolate with both GCF- 3 and GCF- 6, strain LK413 (Fig. 5c,d). While 
we observe GCF- 3 in all S. warneri genomes, the GCF is degraded and only encodes the dehydrosqualene synthase gene, crtM, 
and the dehydrosqualene desaturase gene, crtN (Fig. 5a,d; Table S8). Roughly half of the available S. warneri genomes (47.5%) 
encode GCF- 6 in full and thus have two copies of crtM and crtN. We used long- read sequencing to generate near- complete 
genomes for S. epidermidis LK1136 and S. warneri LK413 and found that both strains encode GCF- 3 within their chromosomes, 
while GCF- 6 is encoded on a plasmid within S. warneri. (Fig. S9b; Text S1).

Gene Annotations

Median consensus sequence dissimilarity
GCF 
instances

0.60.0

(b)

0

200

300

100

60%

80%

100%80%
(Average) amino acid identity

(c)

(d)

(e)

Number of samples

-RD

C. minutissimum type A

C. aurimucosum type C

C. sp001807205

C. striatum

C. simulans

C. kefirresidentii

C. jeikeium

C. jeikeium type A

C. amycolatum

C. amycolatum type A

(f)

Simulated distribution of 10,000 
cosine distances

Observed cosine distance 
between codon 

frequencies of GCF and 
the background genome

(a)

NRPS

Fig. 3. Evidence for HGT of an NRPS between divergent Corynebacterium species. (a) Phylogeny constructed from ribosomal proteins showing the 
conservation of Corynebacterium GCF- 50 across the diverse species encoding the NRPS using results from lsaBGC- PopGene analysis. The gene 
schematics show the consensus gene order for the GCF. Gene lengths correspond to the median length across all BGC instances and only genes 
found in two or more genomes are shown. For each species, the gene is coloured based on the median similarity of gene sequences from the species 
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To test for phenotypic effects associated with strains carrying different staphyloxanthin GCFs, we assessed pigmentation levels 
in strains of S. aureus, S. epidermidis and S. warneri with and without full crt operons (Table S9). Cells of S. epidermidis encoding 
GCF- 3 are pigmented compared to strains without the cluster (Fig. 5f). Cells of S. warneri LK413 containing the complete crt 
operon (GCF- 6) and additional copies of crtMN displayed the strongest golden pigmentation, confirmed as staphyloxanthin 
by spectrophotometry based on absorbance profiles between 400 and 500 nm [43, 54] (Fig. 5g). The genomes of the six isolates 
were also confirmed to possess aldH, which encodes a sixth enzyme, located in trans from the crt operon, that is required for 
staphyloxanthin biosynthesis [55].

lsaBGC provides a framework for mining for base resolution novelty in BGCs
We have demonstrated how the lsaBGC suite can be used to group homologous BGC instances into GCFs and subsequently 
uncover their evolutionary trends and phylogenetic distribution. With increasing metagenomic datasets becoming available, 
often from complex microbiomes, we developed lsaBGC- DiscoVary to directly profile BGCs and rapidly identify novel variation 
within GCF- related genes from metagenomes (Fig. S2; Text S1). This is particularly useful to understand the sequence conserva-
tion of genes from GCFs which are poorly represented in available genomic assembly databases. The lsaBGC framework allows 
users to first identify all GCF instances in genomic assemblies to build a comprehensive database of known alleles for GCF 
genes and subsequently apply lsaBGC- DiscoVary to find novel intragenic SNVs that are absent in available assemblies. Further, 

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r)

Fig. 4. An example report produced by lsaBGC- PopGene. A report generated by lsaBGC- PopGene (using lsaBGC v1.31) was slightly modified (select 
columns presented, headers renamed, and colouring was manually added to highlight certain columns). The columns shown correspond to: (a) the GCF 
identifier, (b) the annotation of BGCs belonging to the GCF, (c) the homologue group identifier, (d) the annotation of the homologue group based on PGAP 
and KOfam profile HMMs (brown), (e) the consensus order and (f) the direction of the homologue group across BGC instances belonging to the GCF (light 
blue), (g) proportion of samples with GCF with paralogous instances of the homologue group across their genome, (h) whether the homologue group 
is found in single- copy per sample within the context of the GCF (orange), (i) the median length in bp of the homologue group (purple), (j) whether the 
homologue group contains a key domain used for BGC detection (green), (k) the number of instances of the homologue group found in the GCF, (l) the 
number of samples with the GCF with the homologue group, (m) the proportion of samples with the GCF with the homologue group – the conservation 
of the homologue group in the GCF (red), (n) the proportion of sites deemed as ambiguous in the codon alignment for the homologue group, (o) Tajima’s 
D, (p) median Beta- RD and max Beta- RD statistics computed for instances of the homologue group in the GCF (pink), and (r) the number of populations/
sub- clades with the homologue group. Reports are automatically sorted by the consensus order inferred for homologue groups within the GCF.
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lsaBGC- DiscoVary extracts the subset of reads supporting the presence of novel SNVs, enabling use of exhaustive methods for 
validation of novel SNVs. Such validation would otherwise be computationally intensive and impractical to perform with the 
full set of reads from a metagenome.

First, we assessed the ability of lsaBGC- DiscoVary to properly determine the location of SNVs within genic codon alignments. 
We found a high concordance (>96 % overlap) between reported novel SNVs when compared to an assembly- based approach 
using whole- genome sequencing readsets for 132 M. luteus isolates (Fig. S11; Tables S10, S11; Text S1). Next, to demonstrate the 
precision of lsaBGC- DiscoVary when working with metagenomic datasets where multiple strains from a single species could be 
present, we applied it to profile novel SNVs across skin metagenomes in the recently characterized cutimycin synthesis encoding 
BGC from C. acnes (Text S1). Cutimycin, an anti- staphylococcal thiopeptide [22], is largely restricted to isolates belonging to 
either clades IB or III C. acnes (Fig. S12a), which is the most common species at sebaceous body sites [29]. In metagenomes where 
an independent software for strain presence assessment, StrainGST [36], detected both clade I and III C. acnes strains as present, 
lsaBGC- DiscoVary found novel SNVs specific to reference gene alleles gathered from both clade I and III genomes. However, as 
expected, for metagenomes where only clade I strains were detected by StrainGST, novel SNVs identified by lsaBGC- DiscoVary 
were never specific to reference gene alleles from clade III genomes (Fig. S12b).

lsaBGC identifies novel SNVs within polyketide synthase catalytic domains
After validating the ability of lsaBGC- DiscoVary to reliably identify novel SNVs using single- isolate- read sets with paired assem-
blies and within the characterized GCF encoding for cutimycin biosynthesis, we applied it to less investigated GCFs across the 
C. tuberculosteraricum species complex. Phylogenomic [56] and ANI [57] investigations revealed that C. tuberculostearicum 
exhibits high genomic similarity (ANI >88 %) to four other species in GTDB (Figs S5b, S13a), which we refer to in aggregate as 
the C. tuberculostearicum species complex. We have since further investigated this species complex in a follow- up study [58]. 
While metagenomic profiling found that this complex features the most prevalent Corynebacterium species within healthy skin 
microbiomes (Fig. S5b, Table S4), only 22 genomic assemblies were available for the complex at the time of this analysis. This 
clade thus represents an ideal taxonomic group to examine novel BGC microdiversity in metagenomes.
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Fig. 5. Staphyloxanthin is ubiquitous across Staphylococcus. (a) A maximum- likelihood phylogeny of the full genus Staphylococcus was constructed 
from ribosomal protein encoding genes. The clade in green represents the newly recognized genus Mammaliicoccus. Heatmaps showcase the presence 
of the five crt genes for each species for five separate GCFs containing the crt operon. The shading indicates the proportion of a species found to carry 
homologue groups within a particular GCF context in log

10
 scale. Schematics for the genomes of (b) S. equorum C2014, (c) S. epidermidis LK1136 and 

(d) S. warneri LK413 are shown with the location of GCFs with the crt operon marked. The symbol Ϯ signifies non- circular/incomplete scaffolds. (e) A 
maximum- likelihood phylogeny of CrtMN from GCF instances shown in panels (b–d) as well as S. aureus st. Newman is depicted with branch colouring 
based on GCF identity. The heatmap indicates which isolates the sequences correspond to as well as whether they were located on the chromosome or 
a plasmid. The degraded instance of the GCF- 6 BGC in S. equorum is not included. (f) Representative isolates with and without staphyloxanthin encoding 
GCFs were grown on TSA to visualize pigmentation production. (g)  Methanol extractions and wavelength absorption analysis were performed to 
identify signature peaks in the 400 to 500 nm range associated with the presence of staphyloxanthin in S. aureus. Spectra are normalized to cell density.
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We ran lsaBGC- DiscoVary systematically on 6 GCFs identified in the species complex, largely encoding for unknown metabolites, 
and found 40 019 putatively novel SNV instances across 105 homologue groups and 109 metagenomic samples. Of these, 5474 
instances were filtered because reads supporting their presence aligned with a higher score to other regions in a concatenated 
database of all Corynebacterium genomes from GTDB as compared to the GCF- specific reference gene databases used for lsaBGC- 
DiscoVary (Text S1). While ubiquitous, C. tuberculostearicum species complex members are present at very low abundances in 
some body sites where metagenomic assembly would struggle to construct their genomes (Fig. S13b; Text S1). We performed 
sample- specific metagenomic assemblies [59] and found that at least 11 659 novel SNV instances detected by lsaBGC- DiscoVary 
would be missed by assembly- based investigation (Fig. S13c; Text S1). In total, among the 103 homologue groups that had novel 
SNVs identified, lsaBGC- DiscoVary was able to increase the proportion of variable sites along their codon alignments on average 
by 5.7 % (Fig. 6a).

To further investigate the novel SNVs detected, we focused on 68 context- distinct homologue groups overlapping or near proto-
core regions of BGCs and further filtered based on standardized coverage metrics, retaining 5802 instances of 2343 unique novel 
SNVs. Novel SNVs were more likely to correspond to synonymous changes if they were found in multiple metagenomic samples 
(Fig. S13d; Text S1). Further, metagenomic samples from the same subject at different body sites and from the same body sites 
across different subjects were more likely to share novel SNVs, compared to metagenomic samples from different body sites and 
different subjects (P<1E- 8; two- sided Wilcoxon rank sum test) (Fig. S13e; Text S1).

Finally, we expected and observed that the ratio of predicted synonymous to non- synonymous novel SNVs increases at deeply 
conserved sites along homologue groups (Fig. 6b; Table S12; Text S1). The homologue group with the greatest number of novel 
SNVs, and novel, non- synonymous SNVs within highly conserved regions, was the PKS gene responsible for synthesis of mycolic 
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Fig. 6. Thousands of novel SNVs identified within BGCs from the C. tuberculostearicum species complex. (a) A scatterplot showing the proportion of sites 
along BGC homologue group codon alignments with variability (at least two different alleles) before and after consideration of novel SNVs identified by 
lsaBGC- DiscoVary. (b) The number of novel SNVs is shown for ranges of conservation percentile across all homologue groups and metagenomes. The 
colouring corresponds to the ratio of synonymous to non- synonymous novel SNVs within each conservation range. (c) Novel SNVs are shown for the 
polyketide synthase involved in mycolic acid biosynthesis. The top panel showcases the non- synonymous (up- facing) and synonymous (down- facing) 
novel SNVs found along the T1PKS gene, with heights corresponding to the number of metagenomes with the novel SNV. The middle panel shows the 
conservation scores coloured by percentile ranges (lightest, least conserved sites; darkest, most conserved sites). Key domains common to T1PKS are 
shown underneath, along with the location of predicted non- synonymous mutations within the top 5 % of conserved sites for the gene. Two adjacent 
SNVs affecting the coding of the residue at position 343 were identified and these could result in a combined effect of encoding for alanine.
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acid, a major component of the cell wall in most Corynebacterium species recently shown to have immunomodulatory effects on 
the skin [25, 60, 61]. We identified and manually validated three non- synonymous SNVs along conserved sites of the PKS gene, 
including two adjacent SNVs predicted to affect one codon within the ketoacyl synthase domain, which catalyzes condensation 
[62], and could alter reaction kinetics [63] or scaffold structure [64] (Figs 6c, S14; Table S13).

DISCUSSION
The lsaBGC suite packages several fundamental, as well as novel, functionalities for high- throughput comparative and evolu-
tionary analysis of BGCs from any taxa in a structured framework, such as the ability to detect GCFs within draft- quality 
genomic assemblies. Of practical relevance, it produces a comprehensive spreadsheet that includes annotation, conservation and 
evolutionary statistics for homologue groups found in GCFs to enable efficient and high- throughput assessment by users. By 
incorporating GToTree [56], lsaBGC will also automatically generate visualizations showing the distribution of GCFs across a 
species phylogeny. However, for more constrained taxonomic investigations, which might focus on a single lineage, more resolute 
whole- genome phylogenies might be appropriate to use.

Paralogy of homologue groups or full BGCs is an important consideration when interpreting evolutionary statistics [64, 65]. 
As such, we now clearly mark which homologue groups do not correspond to single- copy orthologues within GCF contexts 
in resulting reports produced by lsaBGC and have made it the default setting to use more resolute hierarchical orthogroups 
determined by OrthoFinder, which are better able to partition paralogous proteins.

The metagenomic mining functionalities of lsaBGC further provide insight into the presence and sequence diversity of 
a specific taxa’s BGCs across diverse microbiomes. This is a particularly important feature for rare BGCs and taxa with a 
limited number of genomic assemblies available, such as taxa that are difficult to cultivate from complex metagenomes. 
lsaBGC- DiscoVary prioritizes the reduction in false positives at the expense of incurring false negatives using a multitude 
of conditional assessments. While these settings should be generally applicable to most short- read sequencing metagenomic 
datasets, users should assess the conditions to ensure appropriate application for their research aims. A current limitation 
of lsaBGC- DisoVary is the inability to discover novel SNVs in intergenic regions within BGCs, which might be important 
for transcriptional regulation, and should be considered for future versions of the suite. The use of pan- genome alignment 
approaches [66] to potentially increase the efficiency of lsaBGC for metagenomic identification of novel variants within BGC 
genes may also be explored.

Here, we apply lsaBGC’s functionalities to major taxa commonly found in skin microbiomes as a proof of concept to demon-
strate the potential to advance understanding of the diversity, evolutionary trends and prevalence of both well- studied and 
uncharacterized secondary metabolites. For example, we uncovered the ubiquity of the carotenoid staphyloxanthin across the 
genus Staphylococcus, a molecule conferring the signature golden pigmentation in S. aureus [49, 50]. These findings raise the 
hypothesis that staphyloxanthin, which has been identified primarily as a virulence factor conferring oxidative stress resistance 
in the pathogen S. aureus [47, 67], could similarly contribute to virulence in other staphylococcal species or serve additional 
unknown functions. Supporting this hypothesis, we observe that one staphyloxanthin encoding GCF appears to be ancestral to 
the skin- associated, multi- species clade that features both S. aureus and S. epidermidis. The observation that multiple copies of crt 
genes can be found within a single genome further suggests that staphyloxanthin is of functional importance, since evolutionary 
retention of paralogous genes has previously been shown to underlie ecological advantages [68, 69]. Additionally, while this GCF 
is present in most skin- associated species, it is absent in >95 % of S. epidermidis genomes, suggesting large- scale loss within the 
species. It will thus be interesting to further explore how the loss of staphyloxanthin, if it contributes to virulence in S. epidermidis, 
coincides with the species’ reputation as a beneficial symbiont of host skin [29, 70].

Using the novel metagenomic mining functionality of lsaBGC, we identified novel SNVs distinguishing uncultured C. acnes 
and Corynebacterium strains from isolates with genomes available in public databases. We further determined that some of the 
most common skin- residing species [28, 37] belonging to the C. tuberculostearicum species complex, vastly underrepresented 
in public databases, contain thousands of novel SNVs within the BGCs of the clade. Critically, some of these variants could have 
functional implications, as they lie within highly conserved regions of important enzymatic domains for metabolite biosynthesis.

The comprehensive and open- source packaging of lsaBGC allows analyses to be applied to both public and proprietary microbial 
genomic databases. Besides accelerating fundamental evolutionary research of BGCs from diverse taxa, we envision that lsaBGC 
will be particularly useful for natural product discovery and guiding mechanism- of- action studies. Evolutionary insight gathered 
from lsaBGC can be used as prior information to train algorithms in an emerging field using artificial intelligence to identify 
new antibiotics [71, 72]. Further, an improved understanding of the relationship between intra- taxa genomic diversity and BGC 
content novelty at base resolution can also highlight which sub- lineages or sub- clades bear the largest reservoir of untapped 
secondary metabolic potential. Finally, we posit that identifying evolutionary trends of BGCs detected by highly reliable rule- 
based approaches, such as antiSMASH [9], can be used to assess the validity of BGC predictions from newly developed machine 
learning approaches, such as DeepBGC [12] or GECCO [73], which we now support use of in lsaBGC.
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METHODS
Overview of lsaBGC programs and workflows
lsaBGC v1.0 was used for the analyses in this study unless otherwise noted. Since the initial release of the suite, changes to core 
programs have largely been minimal and updates have largely focused on improving the interface through newly introduced 
programs to simplify usage of the suite. One of the new programs is the lsaBGC- Easy, which is our current recommended 
workflow for running lsaBGC, and can be run using a simple one- line command on any focal bacterial taxa of interest. Programs 
and workflows provided in lsaBGC are described in depth in the Text S1 subsection ‘Descriptions of lsaBGC programs and 
algorithms’ and on its Github wiki. Benchmarking analyses described in the Results are explained in greater detail in the Text 
S1 section ‘Benchmarking Analyses for lsaBGC- AutoExpansion and lsaBGC- DiscoVary’. Brief descriptions of the individual 
programs and workflows within lsaBGC are provided here with greater details on algorithms, considerations and parameters 
described in Text S1.

lsaBGC- Cluster (core program) clusters homologous and non- fragmented instances of BGCs, identified by antiSMASH, similar 
to BiG- SCAPE [10]. Users can then generate a report to select for the most appropriate parameters for downstream analyses of 
interest.

lsaBGC- Expansion (core program) can directly identify GCF instances within genomes, following gene calling, using 
an HMM- based approach that is similar to ClusterFinder [11]. It uses profile hidden Markov models (HMMs) to identify 
homologues of GCF- associated genes in assemblies followed by a classical HMM approach to define BGC regions and their 
boundaries. It is specifically designed to account for BGC fragmentation due to incomplete genomic assemblies. The lsaBGC- 
AutoExpansion (workflow) provides a systematic workflow for identification of GCFs determined from BGCs in a primary or 
core set of genomes in a separate, additional set of genomes, which might be of draft quality. Use of lsaBGC- AutoExpansion 
is recommended instead of lsaBGC- Expansion individually because the workflow additionally features a consolidation step 
in which BGC instances identified as potentially belonging to multiple GCFs are reassessed and assigned to only the single 
best fitting GCF (Fig. S1c).

lsaBGC- Refiner (core program) provides the option to manually separate hybrid or multi- class GCFs based on user- defined 
boundary homologue groups.

lsaBGC- See (core program) permits visualization of BGCs across a user- provided species tree or a BGC- based phylogeny and 
can handle multiple fragmented BGC instances from the same genome, depicting them as neighbouring leaves on phylogenies.  
GSeeF. py (auxiliary program) is a standalone program that can visualize GCFs as a heatmap across a species phylogeny using 
either lsaBGC or BiG- SCAPE results.

lsaBGC- PopGene (core program) can then infer evolutionary and population genetics statistics for each homologue group 
associated with a GCF. It produces a convenient table report that makes assessment of homologue group syntenic context, 
annotation and evolutionary metrics easy for users (Fig. 3).

lsaBGC- Divergence (core program) calculates a comprehensive statistic between pairs of homologous BGCs from the same GCF 
but different genomes, which we refer to as Beta- RD, that captures how similar the BGC sequences are relative to what would 
be expected based on genome- wide similarity.  comp areB GCto Geno meCo done Usage. py (auxiliary program) is a standalone 
program that can compare the codon frequencies observed in a BGC to the background genomic context using standard output 
from antiSMASH [9].

lsaBGC- DiscoVary (core program) is a multi- functional program that can mine raw sequencing readsets from metagenomes 
or single genomes for GCF instances and then reliably identify whether they possess novel single- nucleotide variants (SNVs) yet 
to be observed in available genomic assemblies for a taxon (Fig. S2).

lsaBGC- AutoProcess (workflow) was the original workflow for processing user- provided genomes into the input files required 
for downstream lsaBGC analyses (Fig. S1a). The workflow, used for the analyses described in this study, performs gene calling 
and standard annotation using Prokka [32], identifies BGCs using antiSMASH [9] and determines homologue groups using 
OrthoFinder [14]. In newer versions of lsaBGC, the worklow is no longer supported and has been replaced with lsaBGC- Ready 
(core program), which provides similar functionalities and can reformat existing BGC prediction results, as well as clustering 
into GCFs performed using BiG- SCAPE [10], to generate the input files needed for lsaBGC.

lsaBGC- AutoAnalyze (workflow) runs the core analytical programs lsaBGC- PopGene, lsaBGC- See, lsaBGC- PopGene and, 
optionally, lsaBGC- DiscoVary for each GCF and creates a few consolidated reports and visualizations after completion. Earlier 
versions of the workflow, which were used in this study, ran CompareM [74] or FastANI [57] to estimate genome- wide expected 
differences, whereas in the latest lsaBGC releases, this information is instead provided as an argument and calculated upstream 
in lsaBGC- Ready using core- gene alignments generated by GToTree [56].
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lsaBGC- Easy (workflow) simplifies the application of lsaBGC by allowing users to perform the majority of analyses by simply 
issuing a single command. It can automatically perform BGC prediction, using GECCO [73] by default, dereplicate genomes, 
download genomes for a specific taxon and run lsaBGC- Ready and lsaBGC- AutoAnalyze.

Use of genomic and metagenomic datasets
To overcome issues with misclassification and contamination, we used GTDB (release 202) [75] to query for reliable genomic 
assemblies and respective species designations for the genera Corynebacterium, Cutibacterium, Micrococcus and Staphylococcus 
(Table S1). Two staphylococcal genomes (GCF_900098335.1 and GCF_000276505.1) were dropped from analysis due to failure to 
process in lsaBGC- AutoProcess. For Micrococcus, we further included 132 additional genomes of the type species M. luteus that 
our laboratory had sequenced (BioProject ID PRJNA803478) but had not yet been uploaded to NCBI to be included in the GTDB 
release used. These isolates were classified as M. luteus by GTDB- tk [76] and exhibited >95 % ANI to the NCBI representative 
genome for the species M. luteus NCTC 2665. A similar approach was used for gathering genome sets for species- level analyses 
performed (Table S1). For the C. tuberculostearicum species complex, an additional five genomes from NCBI were gathered, 
classified using GTDB- tk [76] and incorporated into analysis if they belonged to one of the five species designated as belonging 
to the complex.

Because a single representative per species as provided by GTDB might not adequately capture the diversity of BGCs found 
across a genus, we instead employed a more granular approach to select for representative genomes for a genus. We performed 
dereplication using MASH [77] with an estimated ANI cutoff of 0.99 to pair similar genomes and dynamically select representative 
genomes from each cluster based on assembly N50 (Table S1). This dereplication was performed using the script  popS izeA ndSa 
mple Selector. py provided in the lsaBGC suite. Complete or chromosome- level assemblies among the representative genomes 
were run through  lsaBGC-  AutoProcess. py and  lsaBGC-  Cluster. py to identify the core set of GCFs per genus. GCFs determined 
from the core set of genomes were comprehensively identified in the remaining genomes using  lsaBGC-  AutoExpansion. py, 
including those that were not deemed as representatives from the MASH based analysis to showcase scalability (e.g. all 15 055 
Staphylococcus and not just the 229 representative genomes, of which 77 corresponded to complete/chromosome- level assemblies). 
To expedite population genetics analysis, however, we only ran the downstream functional analytics of lsaBGC using the repre-
sentative genomes for each genus. For species- level analyses, all genomes available were used for such downstream analyses and 
to comprehensively profile known alleles for genes in BGCs, which was critical to enable metagenomic mining for base resolution 
novelty, previously unseen in assemblies available for a species. For population- level analyses within species, strain delineations 
were performed using the  popS izeA ndSa mple Selector. py script in lsaBGC with strain groups determined from single- linkage 
clustering of pairs of genomes found to exhibit >98 % ANI and >80 % genomic content similarity by FastANI [57].

For determining skin- associated species amongst the genera investigated in our study and to demonstrate mining functionalities 
with lsaBGC- DiscoVary, we used a paired- end metagenomics dataset sequenced on the Illumina NovaSeq, where individual 
samples corresponded to microbiome surveys of 1 of 8 body sites for 1 of 34 participants, collected in the US state of Wisconsin 
(BioProject ID PRJNA763232) [37]. As previously described [37], adapter removal, quality filtering, human sequence decon-
tamination and tandem repeat removal were performed using fastp (v0.21.0) [78] and KneadData (v0.8.0) (https://huttenhower. 
sph.harvard.edu/kneaddata/).

Genomic assessment for staphyloxanthin carriage in the laboratory isolate collection
We had previously constructed draft genomic assemblies for 44 Staphylococcus isolates from skin (BioProject ID PRJNA803478; 
BioProject ID PRJNA830888). Illumina sequencing was performed at the Microbial Genome Sequencing Center (MiGS). Briefly, 
assemblies were generated using Unicycler [79] with default settings after quality and adapter trimming using fastp [78]. The 
set of 44 Staphylococcus genomes were searched for carriage of staphyloxanthin encoding GCFs identified in our study using 
lsaBGC- AutoExpansion (Table S9).

Library preparation, sequencing and genomic assembly
Reconstruction of Illumina draft assemblies for 132 M. luteus
We assessed the performance of multiple programs in the lsaBGC suite using a set of genomic assemblies for 132 M. luteus isolates 
that were cultured from skin. For these isolates, assemblies were reconstructed from raw reads (BioProject ID PRJNA803478) 
and were uploaded to the NCBI’s GenBank database (Table S1). Briefly, Illumina sequencing reads were processed using fastp (v 
0.20.1) [78] to trim for Poly- G tail artifacts and TrimGalore (v 0.6.5) [80] was additionally used to detect and remove adapters. 
Afterwards, assembly was performed using Unicycler (v 0.4.6) [79] with default settings.

Construction of Illumina+Nanopore hybrid assemblies for staphyloxanthin-producing S. warneri LK413 and S. epidermidis 
LK1136
To learn the genomic location of staphyloxanthin- encoding GCFs in S. epidermidis LK1136 and S. warneri LK413, we performed 
additional long- read sequencing using Oxford Nanopore Technologies (ONT). Library construction, using a PCR- free ligation 

https://huttenhower.sph.harvard.edu/kneaddata/
https://huttenhower.sph.harvard.edu/kneaddata/
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method, and sequencing were performed at the Microbial Genome Sequencing Center (MiGS). Hybrid assemblies were constructed 
using a modified version of the Hybrid Assembly workflow in seQuoia (https://github.com/broadinstitute/seQuoia). Illumina 
reads, used for construction of the initial draft genomic assemblies for the isolates, were first reprocessed using fastp (v 0.20.1) [78] 
to trim for Poly- G tail artifacts and TrimGalore (v 0.6.5) [80] was subsequently used to detect and remove adapters. Similarly, ONT 
FASTQ reads, provided by MIGS after basecalling, were filtered for potential adapters using PoreChop (v 0.2.3) (https://github. 
com/rrwick/Porechop) and filtered to retain only reads >3 kb in length as well as subsampled to 300 Mb (while being inclusive 
of all reads >20 kb) using the script  fastqfilter. py included in seQuoia. Afterwards, hybrid assemblies were constructed using 
Unicycler (v 0.4.6) [79] with default settings and additional Pilon (v 1.23) [81] polishing was performed iteratively by aligning 
ONT reads [82], as well as the Illumina reads [83], to assemblies and refining them, allowing for a maximum of 10 iterations. 
Quality assessment of the two near- complete assemblies was performed using GAEMR (https://github.com/broadinstitute/ 
GAEMR) (Text S1).

Experimental validation of staphyloxanthin production in non-aureus Staphylococcus
Isolates were grown overnight at 37 °C on tryptone soy agar plates and inoculated into tryptone soy broth at a concentration of 
1×106 c.f.u. ml−1. Liquid cultures were grown in shaking conditions at 37 °C for 24 h; 10 ml of the liquid culture was then pelleted 
and washed twice with phosphate- buffered saline (PBS) before pigment extraction in 1 ml of methanol at 55 °C for 15 min. Spectral 
scans from 300 to 600 nm were taken using a plate reader (EPOCH2, Biotek, Winooski, VT, USA). Absorbance readings were 
blanked with methanol and normalized to liquid culture cell density based on OD600. The spectra shown are representative of at 
least two biological replicates.

MASH distance neighbour-joining tree construction
Average nucleotide identity estimates between pairs of genomes were computed with MASH [77] and used to create a distance 
matrix. The distance matrix was then used to construct a neighbour- joining tree with the ape library in R [84].

Phylogenetic constructions
Ribosomal phylogeny construction
Ribosomal phylogenies for each species were constructed based on a concatenated alignment of 16 ribosomal proteins [85]. 
HMMER (v3) was used to search for profile HMMs of each ribosomal protein in the predicted proteomes of samples of interest 
belonging to a particular taxonomic group. Afterwards, the best matching hits for each sample based on alignment E- value were 
identified and used to construct individual alignments for each ribosomal protein with the l- INS- I method in MAFFT [86]. 
Protein alignments were then converted to codon alignments using PAL2NAL [87] and subsequently concatenated together. 
Samples that featured >25 % gaps in the concatenated alignment were filtered, after which core SNV sites were extracted and used 
to construct a maximum- likelihood phylogeny with RAxML [88], specifying a GTRCAT model and performing 100 bootstraps. 
Where needed, ribosomal phylogenies were subset to showcase relationships between select samples using PareTree (http:// 
emmahodcroft.com/PareTree.html; v1.0.2).

Staphyloxanthin phylogeny construction
A maximum- likelihood phylogeny was constructed from a concatenated protein alignment of CrtM and CrtN amongst repre-
sentative Staphylococcus genomes to understand the relationship between different GCFs encoding for staphyloxanthin. Proteins 
designated as OG0001876 (CrtM) and OG0001904 (CrtN) were gathered for each staphyloxanthin- encoding GCF found in 
each sample and aligned using the l- INS- I method in MAFFT [86]. To account for assembly fragmentation resulting in multiple 
proteins from a sample being assigned to the same homologue group for a specific GCF, a consensus sequence was determined 
and multi- allele sites were replaced as gaps. A concatenated alignment of such consensus sequences was subsequently constructed 
and used for phylogeny construction with RAxML using a PROTCAT model with JM selected as the best amino acid replacement 
matrix through the automatic maximum- likelihood model selector [88]. The phylogeny of CrtMN sequences exhibited high 
correspondence to GCF delineations, with the exception of a single S. lugdunensis BGC, which is likely misclassified as GCF- 17 
and should be GCF- 3. Upon further examination, it was identified that the reason for the misclassification was likely due to the 
absence of mevalonate pathway genes, classified as a type III polyketide synthase (T3PKS), within S. lugdunensis, which are found 
downstream of the crt operon in all other species with GCF- 3 (Figs S9a, S10a).

Pyrazinone phylogeny construction
A maximum- likelihood phylogeny was constructed from a concatenated protein alignment of PznA and PznB amongst representa-
tive Staphylococcus genomes using the same methods as described for phylogeny construction from CrtMN proteins.

Validation of the C. tuberculostearicum species complex as a monophyletic clade
To validate that the C. tuberculostearicum species complex is a monophyletic clade, GToTree was used to construct an approxi-
mate maximum- likelihood phylogeny of all 1118 Corynebacterium genomes considered in this study, including all 22 C. 

https://github.com/broadinstitute/seQuoia
https://github.com/rrwick/Porechop
https://github.com/rrwick/Porechop
https://github.com/broadinstitute/GAEMR
https://github.com/broadinstitute/GAEMR
http://emmahodcroft.com/PareTree.html
http://emmahodcroft.com/PareTree.html


14

Salamzade et al., Microbial Genomics 2023;9:000988

tuberculostearicum species complex members, using FastTree [89] built off a concatenated alignment of 138 genes regarded as 
single- copy core for Actinomycetota.

Strain detection and ubiquity assessment of skin-residing species of Staphylococcus, Corynebacterium and 
Cutibacterium
We searched for the presence of representative Staphylococcus, Corynebacterium and Cutibacterium strains in 270 skin 
metagenomes from 34 participants across 8 body sites using StrainGST [36]. To construct the database of distinct 
representative genomes for each genus, the protocol described in the StrainGE documentation was followed. S. aureus 
genomes 16 405 and 278 were dropped from the analysis because at the time of downloading the plasmid and chromo-
some were switched. Briefly, genomes were downloaded from NCBI using ncbi- genome- download (https://github.com/ 
kblin/ncbi-genome-download) and dereplication was performed using built- in StrainGE functionalities (v  0. 1+ 191. 
g7fcfbcd. dirty). For the Cutibacterium database, the incomplete C. acnes Asn12 genome was added manually to include 
a representative from clade III. As some representative genomes were not part of GTDB release R202, GTDB- tk [76] 
was used to annotate such genomes and perform species classification.

For Corynebacterium and Staphylococcus, we considered a species as skin- associated if it was found in at least 10 of the 270 
skin metagenomes, regardless of the abundance (Table S4). Representative genomes that GTDB- tk analysis classified as non- 
Corynebacterium (n=1; not found in metagenomes) or Corynebacterium species not yet catalogued in database release R202 (n=2; 
each detected in only one metagenome) are not shown in Table S4. Certain skin- associated species from each genus were also 
identified in the 19 negative control metagenomic samples, which included air- swab, bench, desk and door- handle samplings 
(Table S4). Because we expect heavy overlap in species content between these environmental samples and skin microbiome 
samples, we still considered such species as skin- associated if they were found in 10 or more skin metagenomes.

We found that the majority of skin- associated Staphylococcus belonged to the S. epidermidis/aureus clade, as has previously been 
noted [45]. Similarly, most of the skin- associated Corynebacterium belonged to C. tuberculostearicum and its close neighbouring 
species (including C. kefirresidentii, C. aurimucosum type E, C. sp. 900539985, C. tuberculostearicum, C. tuberculostearicum type 
C), which we denote in this study as the C. tuberculostearicum species complex. The minimal ANI separating genomes belonging 
to this species complex was determined to be 88.59 % using FastANI [57]. To assess whether any of the 24 new Corynebacterium 
species reported by Saheb Kashaf et al. [31] belonged to this species complex, FastANI was used to look at their ANI similarity to 
genomes from the clade and regard them as additional members if they exhibited 88.59 % ANI or greater. Of note, many additional 
Corynebacterium species have been routinely isolated from the skin [37], which we did not regard as skin- associated based on 
our criteria in this study. In particular, the species of C. amycolatum (detected in four metagenomes), C. kroppenstedtii (detected 
in four metagenomes) and C. simulans (detected in five metagenomes) are commonly found on skin.

The relative abundance prediction for Corynebacterium strains in metagenomic samples and species was taken as the rapct metric 
reported by StrainGST (v 1.3.3; Figure S13b).

Calculation of Tajima’s D for orthologues in BGCs from Staphylococcus
For the comprehensive analysis of Tajima’s D reported in this study, we only considered homologue groups that were found in four 
or more genomes and were strictly single- copy within GCF contexts (Table S7). We investigated Tajima’s D values for common 
homologue groups across all four genera in our study and found that they reflected expectations of a null model, with the median 
intra- species Tajima’s D being centred at a value of roughly 0 (Fig. S7a). When calculating Tajima’s D in aggregate across species, a 
large fraction of homologue groups (17.3%) were found to exhibit high values (>2), suggesting balancing selection; however, most 
of these homologue groups appear to be ancestrally acquired and likely diverged in sequence simply due to speciation rather than 
targeted selective pressures (Fig. S7b). To better discern true instances of balancing selection (Tajima’s D >2) and conservation or 
sweeping selection (Tajima’s D <−2), we compared the aggregate genus- wide Tajima’s D with the maximum and minimum value 
of Tajima’s D observed for a single species (Fig. S7b). Species- specific Tajima’s D values for S. aureus strict single- copy orthologues 
(in the GCF and species context) highlighted the staphyloxanthin- encoding GCF- 3 as featuring the greatest number of highly 
conserved homologue groups (Tajima’s D <−2) (Fig. S7c).

Bayesian shrinking analysis to assess Beta-RD distributions for GCFs in Staphylococcus and Corynebacterium
To better understand how distributions of Beta- RD differ across GCFs, in this study, we applied a Bayesian hierarchical model to 
perform shrinking analysis and appropriately account for differences in the number of genomes GCFs that are found (Fig. S5cd; 
Table S6). For computational efficiency, a maximum of 500 Beta- RD observations were used for each GCF. Posterior predictions 
for Beta- RD were made using rstan (Stan Development Team, 2021) with the following hierarchical model:

 µ̄ ∼ norm
(
µ0,σ2

0

)
  

 τ ∼ half− t7
(
1
)
  

https://github.com/kblin/ncbi-genome-download
https://github.com/kblin/ncbi-genome-download
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 µ1 . . . µJ ∼ norm
(
µ̄, τ

)
  

 σ ∼ half− t7  

 yj ∼ norm
(
µj,σ2

)
  

where for each GCF j, the posterior Beta- RD distribution is sampled as yj using Markov chain Monte Carlo with four chains, 
each featuring 2000 iterations, including a burn- in of 1000 iterations. A hierarchical prior was specified for μj, which represents a 
GCF- specific baseline. The values of μ0 and σ0 were set to the respective mean and standard deviation of raw Beta- RD values across 
all GCFs. R and STAN code used for this analysis are available within the scripts subdirectory of the lsaBGC software package.

Phylogenetic and gene cluster visualizations
We used the iTol webserver [90] and packages in R, including ggtree [91] and gggenes, to construct custom phylogenetic and gene 
cluster visualizations for our study. Example visualizations produced by lsaBGC- See and  GSeeF. py are provided on the lsaBGC 
GitHub wiki and are similarly based on these plotting frameworks.

For visualization of staphyloxanthin encoding GCFs across the Staphylococcus phylogeny (Figs 4a, S8b), only a single representative 
genome from each species, as classified by GTDB [75], was selected and used to prune the original ribosomal phylogeny created 
from the diversity representation genome set. The percentage of species members with GCFs for these figures was determined 
using lsaBGC- AutoExpansion results for all ~15K Staphylococcus genomes, and was shown in log10 scale. For generating compara-
tive views between different crt encoding GCF representatives (Fig. S9a) we used clinker [92].
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